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1. INTRODUCTION 
The torque required to maintain the steady rotation of a sphere in an unbounded, incompressible, 
viscous liquid at small angular Reynolds numbers is well known (Lamb 1945). The above study is 
severely limited by the assumption of an unbounded medium, for no such thing really exists. In 
practical applications the fluid does not extend to infinity but, rather, is bounded externally, 
usually by a circular cylinder. Knowledge of the increased torque arising from the presence of the 
cylinder walls is important, for example, in the theory of rotational viscometers and in 
determining the power requirements for the agitation of highly viscous Newtonian fluids in the 
laminar regime. 

Haberman (1961) and, independently, Brenner & Sonshine (1964) studied the problem of a 
sphere (radius = a) rotating slowly with constant angular velocity 1"13 about an axis lying along the 
longitudinal Z-axis of an infinitely long circular cylinder of radius Ro, the viscous fluid being at 
rest at [ZI = oo. By utilizing the expressions derived by Greenstein (1967), we shall extend this 
problem to the general case where the sphere may be placed eccentrically within the cylinder and 
may rotate with an arbitrary constant angular velocity, fl, about any axis. 

2. DESCRIPTION OF THE PROBLEM 

Consider the slow rotation of a spherical particle rotating with an arbitrary constant angular 
velocity through a viscous incompressible fluid confined within an infinitely long circular 
cylinder. The sphere of radius a rotates with an arbitrary constant angular velocity, 
11 = i l l  + jfl2 + kfl3, relative to the cylinder wall. The cylinder radius is Ro and the center of the 
sphere is situated at a distance b from the cylinder axis in the i-direction, as shown in figure 1. 

It is assumed that the fluid motion is governed by the creeping motion and continuity 
equations, 

/xVzV = Vp [1] 

and 

v.  v = 0. [2] 

V is the fluid velocity with respect to a coordinate system having its origin at the sphere center, p 
is the dynamic pressure and/~ the fluid viscosity. The boundary conditions which define the fluid 
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Z-direction 

k 

Figure 1. Sphere rotating in a circular cylinder containing a viscous fluid. 

velocity field V are (i) at fluid-solid imerfaces there is no relative motion; hence 

and 

V = l l x r  a t r = a  [3] 

V = 0 at R = Ro, [4] 

where r is measured from the center of the sphere; (ii) at large distances from the disturbing 
influence of the sphere, ]z]= 0% the fluid is at rest, i.e. 

V ~ 0 as z ~ +- oo. [5] 

Use of the creeping motion equations restricts the validity of the final results to situations in 
which the angular particle Reynolds number, 4a21al/v, is small; v is the kinematic viscosity. 

The above boundary-value problem can be solved by a technique of successive 
approximations known as the method of reflections (see Happel & Brenner 1965). The results 
presented below are only valid for a ~ Ro - b ~< Ro. 

3. RESULTS AND DISCUSSION 

The following expression was obtained for the torque required to maintain the slow, steady, 
arbitrary rotation of an eccentrically situated sphere in a viscous liquid bounded externally by an 
infinitely long circular cylinder. 

T=-i8zr /za3Ol[  l - A ( / 3 ) ( ~ o )  3 -  ( R o ) ] O  a 5 

-j8"rr~a31"12[1- B(~)(~o) 3- O a ] 
3 a 5 

-k87rlza3f~3[1-C(fl)(-~o ) -0(-~oo) ]" [6] 

The functions A(/3), B(/3), and C(/3) derived by Greenstein (1967) have been evaluated 
numerically by Schiavina (1973), for various values of the parameter (/3 = b/Ro) and the results 
obtained are tabulated in table 1. Refer to Schiavina (1973) for additional details. 

Various particular cases may be derived from our general work by making the following 
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substi tutions in [6]. When  the sphere rotates  only about  the i-direction, set ~2 = I~3 = 0. When  the 

sphere rotates  only about  the j-direction,  set f h  = I~3 = 0; and when  the sphere rotates  only about  

the k-direction,  set 1~1 = f~2 = 0. When  the sphere is si tuated at the center  of  the cyl inder , /3  = 0, 

and the appropriate  corresponding value  of  A(/3), B(/3), and/or  C(/3) is read f rom table 1. As  

would  be expec ted  f rom symmetry  considerat ions,  it has been  found that the value of 

A(/3) = B(/3) a t /3  = 0 .  

Verif ication of a por t ion of the results presented  in the preceding sect ion is provided  by the 

theoret ical  value  obtained by Haberman  (1961) and, independently,  by Brenner  & Sonshine 

(1964) for the part icular  case  of  the rotat ion of a sphere about  the longitudinal axis of  an infinitely 

long circular cylinder.  F rom table 1, for  the special case of  a sphere whose  center  is situated on 

the cylinder axis (/3 = 0), C ( / 3 ) =  -0.796811. This is in very  good agreement  with the value  of  

-0 .79680 obtained by Habe rman  (1961), and with the value of  -0.79682417 obtained by Brenner  

& Sonshine (1964) for a point  couple  about  the Z-axis. 

Table 1. Tabulation of A(~8), B(g) and C(/3) vs/3 

fl A(fl) B(/3) C(/3) 

0.00 - 1.47111 - 1.47111 - 0.796811 
0.01 - 1.47159 - 1.47197 -0.797304 
0.03 - 1.47549 - 1.47887 -0.801257 
0.05 - 1.48334 - 1.49274 -0.809207 
0 . 1 0  - 1.52078 - 1.55886 - 0.847258 
0.15 - 1.58575 - 1.67327 -0.913679 
0.20 - 1.68248 - 1.84289 - 1.01342 
0.25 - 1.81768 -2.07875 - 1.15440 
0.30 - 2.00156 - 2.39773 - 1.34883 
0.35 - 2.24960 - 2.82548 - 1.61539 
0.40 - 2.58550 - 3.40159 - 1.98309 
0.45 - 3.04643 - 4.18858 - 2.49808 
0.50 - 3.69281 - 5.28882 - 3.23651 
0.55 -4.62721 -6.87763 -4.32971 
0.60 - 6.03374 - 9.27264 - 6.01729 
0.65 - 8.26681 - 13.0913 - 8.76846 
0.70 - 12.0725 - 19.6473 - 13.5888 
0.75 - 19.2185 - 32.0870 - 22.9069 
0.80 - 34.637 - 59.293 - 43.643 
0.85 - 75.886 - 133.27 - 101.01 
0.86 -91.897 - 162.24 - 123.68 
0.88 - 171 -279 - 196 
0.90 - 256 - 422 - 330 
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